
On the classical and quantum Coulomb scattering

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1997 J. Phys. A: Math. Gen. 30 6981

(http://iopscience.iop.org/0305-4470/30/19/032)

Download details:

IP Address: 171.66.16.110

The article was downloaded on 02/06/2010 at 06:01

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/30/19
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen.30 (1997) 6981–6992. Printed in the UK PII: S0305-4470(97)82948-4

On the classical and quantum Coulomb scattering

D Yafaev
Department of Mathematics, University of Rennes, Campus Beaulieu, 35042, Rennes, France

Received 1 April 1997

Abstract. We develop the scattering theory for the Schrödinger operator with the Coulomb
potential in the space of an arbitrary dimensiond. In particular, we calculate the scattering
matrix and show that its spectrum covers the whole unit circle. We also compute the differential
cross section and show that it coincides with the classical Coulomb scattering cross section in
the dimensiond = 3 only.

1. Introduction. Quantum and classical scattering cross sections

Our main goal is to attract attention to the fact that, for Coulomb potential scattering, cross
sections in classical and quantum mechanics are the same in the dimensiond = 3 only. As
a prerequisite, this requires a precise definition of the quantum Coulomb cross section6q

for an arbitrary dimensiond. We show that stationary and time-dependent definitions of6q

coincide and give an explicit formula for6q.
The paper is organized as follows. In this section we recall definitions of classical6cl

and quantum6q cross sections. For the Coulomb potential, we compute6cl and announce
the formula (formula (1.1)) for6q. In section 2 we collect necessary information about
solutions of the Schrödinger equation with the Coulomb potential for an arbitrary dimension
d of the space. In particular, we find an explicit expression for the coefficient (the scattering
amplitude)a at the outgoing spherical part of the scattering solution. This yields formula
(1.1) for the quantum cross section6q = |a|2. Time-dependent scattering theory for the
Schr̈odinger operator with a Coulomb potential is developed in sections 3 and 4. We show
that the corresponding scattering matrixS is a (singular, in some sense) integral operator
and its kernel coincides (up to a usual numerical factor) with the scattering amplitudea.
As a by-product of our considerations, we describe the structure of the scattering matrixS

and check, in particular, that eigenvalues ofS are dense on the unit circle.

1.1.

One of the celebrated results of quantum mechanics is that for the purely Coulomb potential
the quantum scattering cross section6q(θ;E) coincides with the classical one6cl(θ;E)
for all scattering anglesθ ∈ (0, π ] and all energiesE > 0. In fact, as shown by Gordon
and Mott (see, e.g., [6]), for the potentialV (x) = v|x|−1, x ∈ R3,

6q(θ;E) = (4E)−2v2 sin−4(θ/2).

This is exactly the classical Rutherford formula for6cl(θ;E).
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It turns out, however, that the formulae for6q(θ;E) and6cl(θ;E) are different if
x ∈ Rd for d 6= 3. Indeed, we show that for anyd > 2

6q(θ;E) = (2k)−d+1σd(α) sin−2d+2(θ/2) (1.1)

wherek = (2mE)1/2h̄−1, α = vm1/2(2E)−1/2h̄−1 (m is the mass of a particle) and

σd(α) =


α2(α2+ 1)(α2+ 22) . . . (α2+ (d − 3)2/4) if d is odd

(1.2)

α tanh(πα)(α2+ 1/4)(α2+ 32/4) . . . (α2+ (d − 3)2/4) if d is even.

(1.3)

In particular,σ2(α) = α tanh(πα). In classical mechanics (see subsection 1.5)

6cl(θ;E) = (4E)−d+1|v|d−1 sin−2d+2(θ/2). (1.4)

The right-hand sides of (1.1) and (1.4) contain the same function sin−2d+2(θ/2) of the
scattering angle but the numerical coefficients coincide if and only ifσd(α) = |α|d−1. This
is true ford = 3 only.

Note, however, that|α|−d+1σd(α)→ 1 as|α| → ∞ for any d. Thus, the quantum and
classical cross sections coincide in the quasi-classical limit for all dimensionsd.

Another specific feature of the Schrödinger operator with the Coulomb potential is the
so-called ‘accidental’ degeneracy of its discrete spectrum (in the casev < 0). This means
that, except for the first few, the eigenvalues corresponding to different values of the orbital
quantum numberl are the same. We emphasize that this phenomena holds for all dimensions
d.

1.2.

Let us compare quantum and classical cross sections for more general potentialsV (x) =
v|x|−ρ, x ∈ Rd . If ρ 6= 1, one cannot, of course, hope to obtain an explicit formula for
6q(θ). However, we can study6q(θ) and6cl(θ) in the limit of small scattering angles and
compare their singularities asθ → 0. It is well known (see, e.g., [5]) that in the classical
mechanics, for anyρ > 0,

6cl(θ) = τρ(|v|/E)θ−(d−1)(1+ρ−1)(1+O(θ)) (1.5)

where

τρ(g) = ρ−1(π1/20((1+ ρ)/2)0(ρ/2)−1g)(d−1)/ρ

and0 is the gamma function. As shown in [8], in quantum mechanics the same formula for
6q(θ) holds if ρ ∈ (0, 1). We emphasize that not only powers ofθ but also the asymptotic
coefficientsτρ are the same in classical and quantum mechanics.

On the other hand, the asymptotics of the classical and quantum cross sections are
different if ρ > 1. In the quantum case6q(θ) behaves asθ−2d+2ρ if ρ ∈ (1, d) and hence
it grows less rapidly than function (1.5) asθ → 0. If ρ > d, then6q(θ) even has a finite
limit as θ → 0.

The Coulomb potential is intermediary between casesρ < 1 and ρ > 1, and the
behaviour of scattering cross sections is also intermediary between these cases. Indeed,
formulae (1.1) and (1.4) show that for the Coulomb potential both quantum and classical
cross sections increase as the same powerθ−2d+2 of θ for any d but the coefficients at this
power are different ifd 6= 3.
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1.3.

Recall that in the short-range caseV (x) = O(|x|−ρ), ρ > (d + 1)/2, the Schr̈odinger
equation

−1ψ + V (x)ψ = k2ψ k = (2mE)1/2h̄−1 V = 2mh̄−2V

has, for every incident directionω0 ∈ Sd−1, solutions with the asymptotics

ψ(x, ω0, k) = eik〈ω0,x〉 + a(ω, ω0; k)|x|−(d−1)/2 eik|x| + o(|x|−(d−1)/2) ω = x/|x| (1.6)

as |x| → ∞. The coefficienta(ω, ω0; k) at the outgoing spherical wave|x|−(d−1)/2 eik|x|

is called the scattering amplitude. The differential scattering cross section in an angle dω

aroundω 6= ω0 at the energyE is defined as|a(ω, ω0; k)|2|dω|. Abusing the terminology
somewhat, we call the function

6q(ω, ω0;E) = |a(ω, ω0; k)|2 (1.7)

itself the scattering cross section. Of course, for radial potentialsV (x) = V (|x|) the
scattering amplitude and cross section depend only on the angleθ betweenω andω0 (and
k > 0).

The scattering matrixS(λ), λ > 0, associated with the pairH0 = −1,H = −1 + V ,
is well defined for anyρ > 1. It is an integral operator with kernels(ω, ω′; λ), which in
the caseρ > (d + 1)/2 is related to the scattering amplitude by the formula

s(ω, ω′; λ) = δ(ω − ω′)+ (2π)−(d−1)/2i eiπ(d−3)/4λ(d−1)/4a(ω, ω′; λ1/2) (1.8)

(δ is the Dirac function). This equality may be accepted for the definition of the scattering
amplitude for an arbitraryρ > 1. The functiona(ω, ω′) is regular outside of the diagonal
anda(ω, ω′) = O(|ω−ω′|−d+ρ) as|ω−ω′| → 0. Thus the leading singularity of the kernel
(1.8) at the diagonal isδ(ω − ω′). This implies, in particular, that the operatorS(λ)− I is
compact and hence eigenvalues of the unitary operatorS(λ) may accumulate at the point 1
only.

1.4.

For the Coulomb potential there exist (see section 2) solutions of the equation

−1ψ + γ |x|−1ψ = k2ψ γ = v2mh̄−2 k = (2mE)1/2h̄−1 (1.9)

with asymptotics similar to (1.6) but only outside of a conical neighbourhood of the forward
directionω = ω0. Moreover, the plane wave eik〈ω0,x〉 and the spherical wave|x|−(d−1)/2 eik|x|

are distorted. The coefficient for the distorted spherical wave

a(θ; k) = (2ik)−δ0(δ + iα)0(−iα)−1 sin−d+1−2iα(θ/2) 2 sin(θ/2) = |ω − ω0| (1.10)

is again called the scattering amplitude. Here and below we use the notationα =
γ (2k)−1, δ = (d − 1)/2. According to formula (1.7), we obtain for the differential cross
section expression (1.1), where

σd(α) = |0(δ + iα)0−1(−iα)|2.
Equalities (1.2), (1.3) forσd(α) follow from the usual identities for the gamma function.

Section 3 is devoted to a presentation of scattering theory for the Schrödinger operator
H = −1+ γ |x|−1 with the Coulomb potential. To a certain extent this theory is contained
in the mathematical folklore but, to our surprise, we have not found all necessary results
in the literature. We proceed from the time-dependent formulation of the scattering theory
suggested in [2], where modified wave operatorsW± were introduced. Unfortunately,
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the proof of completeness ofW± and calculation ofW± and of the scattering operator
S = W ∗+W− in terms of solutions of the Schrödinger equation were omitted in [2]. We fill
in this gap in section 3.

The structure of the Coulomb scattering matrix corresponding toS is discussed in
section 4. Using results of section 3 we show thatS(λ) may be considered as an integral
operator with kernel

s(ω, ω′; λ) = 2iαπ−δ0(δ + iα)0(−iα)−1|ω − ω′|−d+1−2iα. (1.11)

Note, however, that because of the strong diagonal singularity of the function (1.11) an
integral operator with such a kernel should be defined (cf [4]) in some special sense.
Comparing (1.10), whereω0 = ω′, and (1.11) we see that relation (1.8) between the kernel
of the scattering matrix and the scattering amplitude is preserved forω 6= ω′. Thus, the
stationary and time-dependent definitions of the scattering amplitude coincide.

We emphasize that in the Coulomb case the operatorS(λ)− I is not compact. In fact,
we check that eigenvalues ofS(λ) are dense on the unit circle.

1.5.

Recall the definition of the scattering cross section in the classical mechanics. Consider
a beam of particles of constant energyE > 0 sent from infinity in some fixed direction
ω0 ∈ Sd−1. Suppose that the beam has a uniform densityN per unit area of the hyperplane
3ω0 orthogonal toω0. Let dN be the number of particles which, after interaction with a
potentialV (x), go to infinity in some solid angle dω ⊂ Sd−1 around a (scattering) direction
ω 6= ω0. This number referred to the density of the incident beam is, normally, proportional
to |dω|, that is dN/N = 6cl|dω|. This quantity is called the differential cross section but
we use this term for the function6cl itself. A particle in the incident beam is labelled by a
vector (the impact parameter)b ∈ 3ω0 and its outgoing directionω is a function ofb. The
classical cross section is completely determined by the functionω = ω(b).

For spherically symmetric potentialsV (x) = V (|x|), the function6cl(ω, ω0) depends
only on the angleθ betweenω andω0. Moreover,θ is a function ofb = |b| only. Suppose
that particles with impact parameters from an interval(b, b + db) are scattered at angles
from an interval(θ, θ + dθ). Then the number dN/N is the volume of the layer inRd−1

between the spheres of radiusb andb + db so that

6cl(θ)|dω| = |Sd−2|bd−2|db|. (1.12)

Let dω be the band onSd−1 limited by the hyperplanes〈x, ω0〉 = cosθ and 〈x, ω0〉 =
cos(θ + dθ); then |dω| = |Sd−2| sind−2 θ |dθ |. Now it follows from (1.12) that

6cl(θ) = sin−d+2 θb(θ)d−2|db(θ)/dθ |. (1.13)

A motion in a central potential is plane so that the functionb = b(θ) is the same for
all dimensionsd. For the Coulomb potential (see, e.g., [5])b(θ) = (2E)−1|v| cot(θ/2).
Substituting this expression into (1.13), we arrive at formula (1.4).

2. Solutions of the Schr̈odinger equation

In the particular cased = 3 the formulae below are contained in almost any textbook on
quantum mechanics (see, e.g., [6]). However, we have not found their proper presentation
for an arbitrary dimension.



On the classical and quantum Coulomb scattering 6985

2.1.

Let us first construct scattering solutions for the Schrödinger equation (1.9). We fix an
incident directionω0 and seek the wavefunctionψ in the form

ψ(x) = eik〈ω0,x〉f (r − 〈ω0, x〉) r = |x|. (2.1)

Substituting this expression into (1.9) we obtain an ordinary differential equation

2tf ′′(t)+ (d − 1− 2ikt)f ′(t)− γf (t) = 0

for the functionf . Therefore,

f (t) = cF (−iα, δ, ikt) α = γ (2k)−1 δ = (d − 1)/2 c = constant

whereF(a, b, z) is the confluent hypergeometric function satisfying the equation

zF ′′(z)+ (b − z)F ′(z)− aF(z) = 0. (2.2)

We choose the regular solution of (2.2) distinguished by the conditionsF(0) = 1, F ′(0) =
a/b. We need the asymptotic expansion ofF(a, b, z) asz→∞ along the positive part of
the imaginary axis:

0(b)−1F(a, b, z) = 0(b − a)−1(−z)−a(1+ G∞(a, a − b + 1,−z))
+0(a)−1za−b ez(1+ G∞(b − a, 1− a, z)) (2.3)

where arg(±z) = ±π/2 and

GN(a, b, z) =
N∑
p=1

(p!)−1a(a + 1) . . . (a + p − 1)b(b + 1) . . . (b + p − 1)z−p.

Setting c = 0(δ)−10(δ + iα)(−i)−iα and using (2.3) fora = −iα, b = δ, we see that
function (2.1) satisfies equation (1.9) and

ψ(x) = exp(ik〈ω0, x〉 + iα ln(kr(1− cosθ)))(1+ GN(−iα,−iα − δ + 1,−ikr(1− cosθ)))

+a(θ; k)r−δ exp(ikr − iα ln(2kr))+O(r−δ−1) N > δ (2.4)

as|x| → ∞ in any conexd 6 cr, c < 1 (or θ > θ0 > 0). Hereθ is the angle (the scattering
angle) betweenx andω0, that is cosθ = 〈x, ω0〉/r, and the scattering amplitudea(θ; k) is
defined by equality (1.10).

Compared to asymptotics (1.6) of scattering solutions in the short-range case, relation
(2.4) differs in several respects.

(1) A conical neighbourhood of the forward directionθ = 0 is excluded.
(2) The first term on the right-hand side of (2.8), corresponding to the incoming

plane wave, contains the phase shiftα ln(kr(1− cosθ)) and corrections vanishing asr−p,
16 p 6 δ.

(3) The second term, corresponding to the outgoing spherical wave, contains the phase
shift −α ln(2kr).

It is natural to accept the coefficienta(θ; k) of the modified spherical wave for the
scattering amplitude. Of course, one can add an energy-dependent constant4(k) to the
phase of the spherical wave, multiplyinga(θ; k) by e−i4(k) at the same time. Apparently
there is no preferable unique choice of scattering amplitude but its modulus is intrinsically
defined. We emphasize that equality (1.10) for the scattering amplitude gives formula (1.1)
for cross section (1.7).
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2.2.

For radial potentials ‘the variables can be separated’ in spherical coordinates. Recall that
the Laplace–Beltrami operator−10 on the unit sphereSd−1 has eigenvaluesl(l+d−2), l =
0, 1, . . . . The corresponding eigenspacehl has dimension

νl(d) = (2l + d − 2)(l + d − 3)!((d − 2)! l!)−1. (2.5)

Let Yl(ω), ω ∈ Sd−1, be an arbitrary function from the subspacehl (i.e. Yl is the spherical
function),x = rω andψ(x) = r−δψl(r)Yl(ω). Then equation (1.9) forψ(x) reduces to the
equation

−ψ ′′l + κlr−2ψl + γ r−1ψl = k2ψl κl = (l + δ − 1/2)2− 1/4 (2.6)

for ψl(r). Making the substitution

ψl(r, k) = rq e−ikrfl(2ikr) q = l + δ (2.7)

we obtain

zf ′′l + (2q − z)f ′l − (q − iα)fl = 0.

This is an equation of the form (2.2) so thatfl is the confluent hypergeometric function.
Let us set

fl(z) = clF (q − iα, 2q, z) with cl = il(2π)−1/20(2l + 2)−1 e−πα/2|0(l + δ + iα)|.
(2.8)

Then using asymptotics (2.3) we find that

ψl(r, k) = il(2/π)1/2 sin(kr − α ln(2kr)− (l + δ − 1)π/2+ ηl(k))+O(r−1) r →∞
(2.9)

where the phase shifts

ηl(k) = arg0(l + δ + iα) α = γ (2k)−1. (2.10)

3. Scattering theory

3.1.

Recall the time-dependent formulation [2] (see also [7]) of the scattering theory for Coulomb
potentials. LetH = −1+ γ |x|−1 be the self-adjoint operator in the spaceL2(Rd). In the
cased > 3 it is defined on the Sobolev classH2(Rd), that is on the same domain as the
operatorH0 = −1. In the cased = 2 its domain consists of functionsu which belong to
H2 outside of any neighbourhood of the pointx = 0 and admit as|x| → 0 the representation
u(x) = u0(x) + γ u0(0)|x|, whereu0 ∈ H2. Denote byP the orthogonal projection on the
continuous subspace of the operatorH (of course,P is the identity operator ifγ > 0).

Let the free dynamicsU0(t) be defined by the equalityU0(t) = 8∗Z(t)8, where8 is
the Fourier transform andZ(t) is multiplication by the functionz(|ξ |, t) with

z(k, t) = exp(−ik2t − iγ (2k)−1sgnt ln(4|t |k2)). (3.1)

Then the strong limits

W± = s − lim
t→±∞exp(iHt)U0(t) (3.2)

exist. The modified wave operatorsW± satisfy the intertwining propertyHW± = W±H0

and are complete, i.e.,W±W ∗± = P . The scattering operatorS = W ∗+W− commutes with



On the classical and quantum Coulomb scattering 6987

H0 and is unitary. Of course, functionz(k, t) may be multiplied by an arbitrary function of
k of modulus 1 (not depending ont). As we shall see, the choice (3.1) corresponds to the
scattering amplitude (1.10), which is also defined up to a unitary factor only.

The simplest proof of these results relies on separation of variables in spherical
coordinates (cf subsection 2.2). LetPl be the orthogonal projection on the subspacehl

so that
∞∑
l=0

Pl = I and −10 =
∞∑
l=0

l(l + d − 2)Pl . (3.3)

If Yl,m is an arbitrary orthonormal basis inhl , then (see [1, vol 2, section 11.4, formula (2)];
there is, however, a misprint in this formula)

νl (d)∑
m=1

Yl,m(ω)Yl,m(ω
′) = ((d − 2)|Sd−1|)−1(2l + d − 2)G(d−2)/2

l (〈ω,ω′〉) d > 3 (3.4)

whereGp

l are Gegenbauer polynomials and|Sd−1| = 2πd/2/0(d/2) is the surface of the
unit sphere. It follows thatPl is an integral operator with kernel (3.4).

Let K = L2(R+; rd−1) be theL2-space with weightrd−1 andHl = K ⊗ hl . To put it
differently, Hl ⊂ L2(Rd) is the subspace of functions of the form

ul(x) = |x|−δg(|x|)Yl(x̂) x̂ = x/|x| (3.5)

whereg ∈ L2(R+) andYl ∈ hl . According to the first equality (3.3),L2(Rd) =
⊕∞

l=0 Hl .
Every subspaceHl is invariant with respect to the Fourier operator8 which reduces to the
Fourier–Bessel transform onHl . More precisely, letJp be the Bessel function and

(8lg)(k) = i−lk1/2
∫ ∞

0
Jl+(d−2)/2(kr)r

1/2g(r) dr.

Then for function (3.5)

(8ul)(ξ) = |ξ |−δ(8lg)(|ξ |)Yl(ξ̂ ) ξ̂ = ξ/|ξ |. (3.6)

The operator8l is unitary onL2(R+).
Let z(t) be multiplication by function (3.1) inL2(R+) andU(l)

0 (t) = 8∗l z(t)8l so that

(U
(l)

0 (t)f0)(r) = ilr1/2
∫ ∞

0
k1/2Jl+(d−2)/2(kr)z(k, t)f̂

(l)

0 (k) dk f̂
(l)

0 = 8lf0. (3.7)

The subspaceHl is invariant with respect toU0(t) and with respect to the Schrödinger
operator with a radial potential. LetT : L2(R+) → K be a unitary operator defined by
(T g)(r) = r−δg(r). It is easy to see that

U0(t) =
∞⊕
l=0

T U
(l)

0 (t)T
∗ ⊗ Il and H =

∞⊕
l=0

TH(l)T ∗ ⊗ Il (3.8)

where Il is the identity operator onhl andH(l) = −d2/dr2 + κlr−2 + γ r−1. Note that
operatorsH(l) are essentially self-adjoint on the domainC∞0 (R+) if κ > 3/4. If κ = 3/4
(d = 2, l = 1 or d = 4, l = 0), then the domain ofH(l) is distinguished by the boundary
conditionu(r) = O(r3/2) as r → 0. If κ = 0 (d = 3, l = 0), thenH(l) is self-adjoint on
H2(R+) with the conditionu(0) = 0. If κ = −1/4 (d = 2, l = 0), then functions from the
domain ofH(l) satisfyu(r) = r1/2+ γ r3/2+O(r5/2) asr → 0.

Suppose that wave operators

W
(l)
± = s − lim

t→±∞exp(iH(l)t)U
(l)

0 (t) (3.9)
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exist for all l. It follows from (3.8) that limits (3.2) also exist and

W± =
∞⊕
l=0

TW
(l)
± T

∗ ⊗ Il S =
∞⊕
l=0

T SlT ∗ ⊗ Il Sl = (W(l)
+ )
∗W(l)
− . (3.10)

If all wave operatorsW(l)
± are complete, i.e.W(l)

± (W
(l)
± )∗ = Pl (Pl is the orthogonal projection

on the continuous subspace ofH(l)), then, according to (3.10), the wave operatorsW± are
also complete.

3.2.

Let us check the existence and completeness of operatorsW
(l)
± . At the same time we shall

calculate them in terms of solutions of the Schrödinger equation (2.6). Let functionsψl(r, k)
be defined by formulae (2.7) and (2.8), whereα = γ (2k)−1, and set

(9lf )(k) =
∫ ∞

0
ψl(r, k)f (r)dr f ∈ C∞0 (R+). (3.11)

Lemma 3.1. The operators9l are bounded in the spaceL2(R+), 9l9∗l = I (orthogonality
of the eigenfunctionsψl), 9∗l 9l = Pl (their completeness) and 9lH(l) = k29l (the
intertwining property).

The proof of this assertion is the same as in the short-range case. Its result on
the generalized Fourier transform9l is of the same nature as unitarity of the usual
Fourier–Bessel transform. Perhaps this result was not noted in the theory of the confluent
hypergeometric function.

Lemma 3.2. If e±iηl(k)g(k) = g0(k), then

lim
t→±∞‖exp(−iH(l)t)9∗l g − U(l)

0 (t)8
∗
l g0‖ = 0. (3.12)

We give the proof of this lemma in subsection 3.3.
Since8∗l 8l = Il , lemma 3.2 implies the existence of wave operators (3.9) and the

equalityW(l)
± 8∗l = 9∗l e∓iηl , whereηl is multiplication byηl(k). Now the completeness of

W
(l)
± follows from the equality9∗l 9l = Pl . Let us formulate the results obtained.

Proposition 3.3. Wave operators (3.2) exist, are complete and

W
(l)
± = 9∗l e∓iηl8l S(l) = 8∗l e2iηl8l. (3.13)

Corollary 3.4. Wave operators (3.2) exist, are complete and admit the representation (3.10).
The scattering operatorS is given by equality(3.10), whereS(l) satisfies (3.13).

3.3. Proof of lemma 3.2

We omit here the index ‘l’. It suffices to prove (3.12) forg0 ∈ C∞0 (R+) (or, equivalently,
g ∈ C∞0 (R+)). It follows from (3.11) and the intertwining property that

(exp(−iHt)9∗g)(r) =
∫ ∞

0
ψ(r, k)e−ik2t g(k) dk. (3.14)

Let us setµ± = exp(∓i(l + δ − 1)π/2),

(U±(t)g)(r) = ±il(2/π)1/2(2i)−1µ±
∫ ∞

0
e±i(kr−γ (2k)−1 ln(2kr)+η(k)) e−ik2t g(k) dk (3.15)
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and check first that

lim
t→±∞‖exp(−iHt)9∗g −U±(t)g|| = 0. (3.16)

The Riemann–Lebesgue lemma (or integration by parts) shows that, for boundedr, integrals
(3.14) or (3.15) tend to zero (quicker than any power of|t |−1) as |t | → ∞. By (2.9), the
function

exp(−iHt)9∗g − (U+(t)+U−(t))g (3.17)

is bounded byCr−1 for larger uniformly in t . Therefore, the norm of function (3.17) tends
to zero as|t | → ∞. Furthermore, using the formula

ei(±kr−k2t) dk = −i(±r − 2kt)−1 d ei(±kr−k2t) (3.18)

and integrating by parts in (3.15), we find that the function(U∓(t)g)(r) is bounded by
C(r + c|t |)−1(1+ |ln r|), c > 0, for ±t > 0. Hence, its norm tends to zero ast → ±∞.
This proves (3.16).

Quite similarly, using representation (3.7) and replacing the Bessel function by its
asymptotics asr →∞ we obtain

lim
t→±∞‖U0(t)8

∗g0−U (0)
± (t)g0‖ = 0

where

(U (0)
± (t)g0)(r) = ±il(2/π)1/2(2i)−1µ±

∫ ∞
0

e±i(kr−γ (2k)−1 ln(4k2|t |)) e−ik2t g0(k) dk. (3.19)

Thus, for the proof of (3.12) it remains to check that the function

U±(t)g −U (0)
± (t)g0 e±iηg = g0 (3.20)

tends to zero inL2(R+) as t → ±∞. Let us compare representations (3.15) and (3.19),
and integrate by parts using equality (3.18). The crucial point is that the singularity of
(r − 2k|t |)−1 is compensated by the vanishing of the function

e∓iγ (2k)−1 ln(2kr) − e∓iγ (2k)−1 ln(4k2|t |)

at the pointr = 2k|t |. This implies that the norm of function (3.20) is bounded by
|t |−1/2 ln |t |.

4. The scattering matrix

4.1.

To define the scattering matrix we consider a diagonal representation ofH0. Set
(Yg)(λ;ω) = 2−1/2λ(d−2)/4g(λ1/2ω). ThenF = Y8 :L2(Rd) → L2(R+;L2(Sd−1)) is a
unitary operator andFH0F

∗ acts as multiplication byλ. Since the scattering operatorS
commutes withH0, the operatorFSF ∗ acts in the spaceL2(R+;L2(Sd−1)) as multiplication
by an operator functionS(λ) :L2(Sd−1)→ L2(Sd−1), λ > 0, called the scattering matrix.

To calculate the scattering matrix note that, according to (3.6), (3.10) and (3.13),

8S8∗ =
∞⊕
l=0

e2iηl ⊗ Il (4.1)

whereηl is multiplication by function (2.10). Equality (4.1) can be rewritten in terms of
the scattering matrix. Recall thatα = 2−1γ λ−1/2.
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Lemma 4.1. Let Pl be the integral operator with kernel (3.4). Then

S(λ) =
∞∑
l=0

S(l)(λ)Pl where S(l)(λ) = exp(2iηl(λ
1/2)) = 0(l + δ + iα)

0(l + δ − iα)
. (4.2)

Thus, the spectrum of the unitary operatorS(λ) consists of eigenvaluesS(l)(λ) of
multiplicity (2.5). By the Stirling formula,

S(l)(λ) = exp(2iα ln(l + δ))(1+O(l−1)) as l→∞.
Since the functionf (x) = ln(x + δ) → ∞ but f ′(x) = (x + δ)−1 → 0 asx → ∞, this
implies.

Proposition 4.2. For anyλ > 0 the eigenvalues of the scattering matrixS(λ) are dense on
the unit circle.

This is completely different from the short-range case when eigenvalues of the scattering
matrix accumulate at the point 1 only (the phase shiftsηl(λ) tend to zero asl→∞).

4.2.

Let us now construct the scattering matrixS(λ) as an integral operator. One can proceed
from expression (4.2) but avoid an apparently difficult problem of summation of this series.
To that end, we obtain an expression for the kernels(ω, ω′; λ) of S(λ) by some heuristic
arguments and then check that such an operatorS(λ) satisfies (4.2). First, by an analogy
with the short-range case we assume thats(ω, ω′; λ) is related to the scattering amplitude
a(ω, ω′; k) for ω 6= ω′ by formula (1.8). Sincea satisfies (1.10), this gives expression (1.11)
for s(ω, ω′; λ). Second, according to proposition 4.2, the spectral point 1 is exceptional for
S(λ) in the short-range but not in the Coulomb case. Therefore, it is natural to expect that
the Dirac function is dropped out ofs(ω, ω′; λ). Thus we suppose that the scattering matrix
S(λ) is given by the equality

(S(λ)f )(ω) = 22iαπ−δ
0(δ + iα)

0(−iα)

∫
Sd−1
|ω − ω′|−d+1−2iαf (ω′) dω′. (4.3)

One must be careful with a precise definition of this integral operator since its kernel
is not integrable in a neighbourhood of the diagonalω = ω′. One of the possibilities is to
replace−iα by −iα+ ε, ε > 0, in (4.3) and approximateS(λ) by compact operatorsSε(λ)
with kernels

sε(ω, ω
′; λ) = 22iα−2επ−δ0(δ + iα − ε)0(−iα + ε)−1|ω − ω′|−d+1−2iα+2ε. (4.4)

This is similar to the definition proposed in [4].
Let us decomposeSε(λ) into an orthogonal sum of projectorsPl .

Lemma 4.3. For anyε > 0

Sε(λ) =
∞∑
l=0

S(l)ε (λ)Pl where S(l)ε (λ) =
0(l + δ + iα − ε)
0(l + δ − iα + ε) . (4.5)

The proof of this lemma is given in subsection 4.4.
Comparing lemmas 4.1 and 4.3, we see thatS(λ) may be approximated by operators

Sε(λ) in the strong operator sense.
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Proposition 4.4. The scattering matrixS(λ) satisfies the relation

S(λ) = s − lim
ε→0

Sε(λ). (4.6)

Formulae (4.4) and (4.6) give precise sense to equality (4.3).

4.3.

According to (4.3), the kernel of the scattering matrixS(λ) is a smooth function outside
of the diagonalω = ω′. Its modulus has a singularity|ω − ω′|−d+1 at the diagonal which
is typical (the powerd − 1 equals the dimension ofSd−1) for singular integral operators.
However,S(λ) is an operator from an essentially different class. In fact, it is bounded
(and even unitary) due to oscillations|ω − ω′|−2iα which compensate the singularity of its
modulus whereas a singular integral operator is bounded because some average value of its
kernel is zero.

The structure ofS(λ) becomes more transparent if one treats it as a pseudo-differential
operator. Its principal symbolp(ω, b) is defined forω ∈ Sd−1, 〈b, ω〉 = 0 (the cotangent
bundle ofSd−1) and, roughly speaking, it is the Fourier transform ofs(ω, ω′) in the variable
ξ = ω − ω′:

p(ω, b) =
∫
Sd−1

s(ω, ω′) e−i〈ω−ω′,b〉 dω′.

By calculation of the principal symbol we can replaceSd−1 by its tangent plane at the point
ω = ω′ and the kernels(ω, ω′) by its singularity atω = ω′. For spherically symmetric
potentialsp(ω, b) depends on|b| only. In particular for kernel (1.11), calculating the Fourier
transform inRd−1 (in the sense of distributions) of the function|ξ |−d+1−2iα we find that
p(ω, b) = |b|2iα. This is an oscillating function as|b| → ∞, whereas in the short-range
case it converges to 1 (the Fourier transform of the Dirac function). In this sense the Dirac
function disappears from the kernel of the Coulomb scattering matrix.

4.4. Proof of lemma 4.3

Let us take into account the fact that|ω − ω′| = 2 sin(θ/2) and expand (see e.g. [1, vol 2,
ch 10]) function (4.4) on the interval(0, π) in a series of Gegenbauer polynomials:

sin−d+1−2iα+2ε(θ/2) =
∞∑
l=0

BlA
−1
l G

(d−2)/2
l (cosθ) d > 3 (4.7)

where

Al =
∫ π

0
(G

(d−2)/2
l (cosθ))2 sind−2 θ dθ

Bl =
∫ π

0
sin−d+1−2iα+2ε(θ/2)G(d−2)/2

l (cosθ) sind−2 θ dθ.

Note that

(2l + d − 2)2d−4l!Al = π0(l + d − 2)0((d − 2)/2)−2

(see [1, vol 2, section 11.1, formula (26)]) and

Bl = 2d−2(−1)l(d + l − 3)!0(δ)0(−iα + ε)0(1− δ − iα + ε)
l!(d − 3)!0(1− δ − iα + ε − l)0(δ − iα + ε + l)



6992 D Yafaev

(the last equality can be easily deduced from formula 7.311(3) of [3]). Using well known
identities for the gamma function we see that

2−d+1π−δ
0(δ + iα − ε)
0(−iα + ε)

Bl

Al
= 2l + d − 2

(d − 2)|Sd−1|
0(l + δ + iα − ε)
0(l + δ − iα + ε) .

Now (4.5) follows from (4.4), (4.7) and expression (3.4) for the kernel of the projectorPl .
In the cased = 2, calculations are much simpler because the role of (4.7) is played by

the formula

sin−1−2iα+2ε(θ/2) = f0+ 2
∞∑
l=1

fl cos(lθ) =
∞∑

l=−∞
fl eilϕ e−ilϕ′

whereω = (cosϕ, sinϕ), ω′ = (cosϕ′, sinϕ′), θ = |ϕ − ϕ′| and

πfl =
∫ π

0
sin−1−2iα+2ε(θ/2) cos(lθ) dθ.

Using [1, vol 1, section 1.5.1, formula (30)], we find that

fl = π−1/2 0(−iα + ε)
0(1/2+ iα − ε)

0(l + 1/2+ iα − ε)
0(l + 1/2− iα + ε) .

This gives again (4.5) withδ = 1/2.
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