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On the classical and quantum Coulomb scattering

D Yafaev
Department of Mathematics, University of Rennes, Campus Beaulieu, 35042, Rennes, France
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Abstract. We develop the scattering theory for the Sitinger operator with the Coulomb
potential in the space of an arbitrary dimensién In particular, we calculate the scattering
matrix and show that its spectrum covers the whole unit circle. We also compute the differential
cross section and show that it coincides with the classical Coulomb scattering cross section in
the dimensiond = 3 only.

1. Introduction. Quantum and classical scattering cross sections

Our main goal is to attract attention to the fact that, for Coulomb potential scattering, cross
sections in classical and quantum mechanics are the same in the dimé&nsi8ronly. As
a prerequisite, this requires a precise definition of the quantum Coulomb cross Segtion
for an arbitrary dimensiod. We show that stationary and time-dependent definitionsof
coincide and give an explicit formula fat,.

The paper is organized as follows. In this section we recall definitions of classical
and quantunizq cross sections. For the Coulomb potential, we compigeand announce
the formula (formula (1.1)) forzq. In section 2 we collect necessary information about
solutions of the Sclirdinger equation with the Coulomb potential for an arbitrary dimension
d of the space. In particular, we find an explicit expression for the coefficient (the scattering
amplitude)a at the outgoing spherical part of the scattering solution. This yields formula
(1.1) for the quantum cross sectidly = |a|?. Time-dependent scattering theory for the
Schibdinger operator with a Coulomb potential is developed in sections 3 and 4. We show
that the corresponding scattering matfixs a (singular, in some sense) integral operator
and its kernel coincides (up to a usual numerical factor) with the scattering amplitude
As a by-product of our considerations, we describe the structure of the scattering shatrix
and check, in particular, that eigenvaluesSoére dense on the unit circle.

1.1.

One of the celebrated results of quantum mechanics is that for the purely Coulomb potential
the quantum scattering cross sectibg(6; E) coincides with the classical ong(6; E)

for all scattering angleg8 € (0, =] and all energiesE > 0. In fact, as shown by Gordon

and Mott (see, e.g., [6]), for the potenti®ll(x) = v|x| ™%, x € RS,

%q(0; E) = (4E)"%?sin*(0/2).
This is exactly the classical Rutherford formula g (0; E).
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It turns out, however, that the formulae far,(0; E) and X (0; E) are different if
x € R? for d # 3. Indeed, we show that for any> 2

2q(0; E) = (2k) ™oy (a) sin?t2(0/2) (1.1)
wherek = 2mE)Y?h1, « = vmY2(2E)~Y?h~1 (m is the mass of a particle) and
a?(@?+ D (@®+2% ... (@®+ (d —-3)?/%) if d is odd
(1.2)
oq(a) = 2 2, a2 2 2 PR
atanh(za)(@ + 1/4) (¢ +37/4) ... (¢“+ (d — /D) if d is even.
(1.3)

In particular,o,(0) = @ tanh(ma). In classical mechanics (see subsection 1.5)
Sa(0; E) = (4E)~ |4 tsin2*2(9/2). (1.4)

The right-hand sides of (1.1) and (1.4) contain the same functiorf’sifid/2) of the
scattering angle but the numerical coefficients coincide if and ondy (&) = |«|¢~1. This
is true ford = 3 only.

Note, however, thal| 1o, () — 1 as|a| — oo for anyd. Thus, the quantum and
classical cross sections coincide in the quasi-classical limit for all dimengions

Another specific feature of the Scltinger operator with the Coulomb potential is the
so-called ‘accidental’ degeneracy of its discrete spectrum (in theicas®). This means
that, except for the first few, the eigenvalues corresponding to different values of the orbital
guantum numbekrare the same. We emphasize that this phenomena holds for all dimensions
d.

1.2.

Let us compare gquantum and classical cross sections for more general pofefitials-
vlx|™”,x € R, If p # 1, one cannot, of course, hope to obtain an explicit formula for
>4(6). However, we can studfq(6) and X () in the limit of small scattering angles and
compare their singularities #&— 0. It is well known (see, e.g., [5]) that in the classical
mechanics, for any > 0,

Sa(6) = 1,(Jol/E)0~ Y& (1 4 06)) (1.5)
where

1,(8) = p L@ Y2T (1 + p) /2T (p/2) Lg)@~V/r

andT is the gamma function. As shown in [8], in quantum mechanics the same formula for
%4(0) holds if p € (0, 1). We emphasize that not only powersébbut also the asymptotic
coefficientst, are the same in classical and quantum mechanics.

On the other hand, the asymptotics of the classical and quantum cross sections are
different if p > 1. In the quantum casgq(#) behaves ag~%+% if p e (1,d) and hence
it grows less rapidly than function (1.5) &s— 0. If p > d, thenXx4(6) even has a finite
limit as6 — 0.

The Coulomb potential is intermediary between cages 1 andp > 1, and the
behaviour of scattering cross sections is also intermediary between these cases. Indeed,
formulae (1.1) and (1.4) show that for the Coulomb potential both quantum and classical
cross sections increase as the same p@wé&t2 of ¢ for any d but the coefficients at this
power are different it/ # 3.
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1.3.

Recall that in the short-range ca3é(x) = O(|x|™?), p > (d + 1)/2, the Schédinger
equation

—AY + V()Y =k k= @mE)Y?p1t V =2mh?V
has, for every incident directiomy € S?~1, solutions with the asymptotics
¥ (x, o, k) = €0 4 a(w, wo; k) |x| "2 4o(x| TP w0 =x/lx| (1.6)

as|x| — oo. The coefficienta(w, wo; k) at the outgoing spherical waye|~@~/2 gklx|

is called the scattering amplitude. The differential scattering cross section in an angle d
aroundw # wg at the energyE is defined aga(w, wo; k)|?|dw|. Abusing the terminology
somewhat, we call the function

Yq(@, wo; E) = |a(w, wg; k)|? 1.7)

itself the scattering cross section. Of course, for radial potentigls) = V (|x]) the
scattering amplitude and cross section depend only on the éngéweenw andwg (and
k > 0).

The scattering matrix(1), A > 0, associated with the paifly = —A, H = —A + V,
is well defined for anyp > 1. It is an integral operator with kernelw, »’; 1), which in
the casep > (d + 1)/2 is related to the scattering amplitude by the formula

s(w, @' A) = 8(w — @) + (2m)~@-D/2 g7@=3/4, @=D/4; () o s 21?) (1.8)

(6 is the Dirac function). This equality may be accepted for the definition of the scattering
amplitude for an arbitrary > 1. The functiona(w, ') is regular outside of the diagonal
anda(w, o) = O(|lw —'|~¥**) as|w —'| — 0. Thus the leading singularity of the kernel
(1.8) at the diagonal i8(w — «'). This implies, in particular, that the operat®r) — I is
compact and hence eigenvalues of the unitary opeator may accumulate at the point 1
only.

1.4.

For the Coulomb potential there exist (see section 2) solutions of the equation
—AY +ylx| Yy =K%y y = v2mh~? k = @mE)Y?pt (1.9)

with asymptotics similar to (1.6) but only outside of a conical neighbourhood of the forward
directionw = wg. Moreover, the plane wavé&o*) and the spherical wave|~@~1/2 gklx|
are distorted. The coefficient for the distorted spherical wave

a@; k) = (2ik)°T' (8 + i) (—ia) "t sin 4172 (g /2) 2sin6/2) = |w — wo|  (1.10)

is again called the scattering amplitude. Here and below we use the notatien
y(2k)~1, 8 = (d — 1)/2. According to formula (1.7), we obtain for the differential cross
section expression (1.1), where

oa(@) = |06 + i) H(—ia)|?

Equalities (1.2), (1.3) for, () follow from the usual identities for the gamma function.
Section 3 is devoted to a presentation of scattering theory for thed@olger operator

H = —A + y|x|~! with the Coulomb potential. To a certain extent this theory is contained

in the mathematical folklore but, to our surprise, we have not found all necessary results

in the literature. We proceed from the time-dependent formulation of the scattering theory

suggested in [2], where modified wave operattfs were introduced. Unfortunately,
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the proof of completeness d¥. and calculation ofW,. and of the scattering operator
S = WiW_ in terms of solutions of the Sabdinger equation were omitted in [2]. We fill
in this gap in section 3.

The structure of the Coulomb scattering matrix corresponding tis discussed in
section 4. Using results of section 3 we show ti&t) may be considered as an integral
operator with kernel

s(w, ;1) =277 + i) (—io) Yo — o |74H120, (1.11)

Note, however, that because of the strong diagonal singularity of the function (1.11) an
integral operator with such a kernel should be defined (cf [4]) in some special sense.
Comparing (1.10), wherey = ', and (1.11) we see that relation (1.8) between the kernel
of the scattering matrix and the scattering amplitude is preserved tgr«’. Thus, the
stationary and time-dependent definitions of the scattering amplitude coincide.

We emphasize that in the Coulomb case the opet&toy — 7 is not compact. In fact,
we check that eigenvalues 6f)) are dense on the unit circle.

1.5.

Recall the definition of the scattering cross section in the classical mechanics. Consider
a beam of particles of constant enerfly> 0 sent from infinity in some fixed direction

wo € S, Suppose that the beam has a uniform denBityper unit area of the hyperplane

A, Orthogonal towy. Let dV be the number of particles which, after interaction with a
potential V' (x), go to infinity in some solid angleslC S~ around a (scattering) direction

 # wg. This number referred to the density of the incident beam is, normally, proportional
to |dw|, that is dV/IN = X |dw|. This quantity is called the differential cross section but
we use this term for the functioB, itself. A particle in the incident beam is labelled by a
vector (the impact parameteb)e A, and its outgoing directiomw is a function ofb. The
classical cross section is completely determined by the funaiienw (b).

For spherically symmetric potential (x) = V (|x|), the functionZ(w, wg) depends
only on the angl® betweenw andwg. Moreover,g is a function ofb = |b| only. Suppose
that particles with impact parameters from an inter¢alb + db) are scattered at angles
from an interval(9,  + df). Then the number /N is the volume of the layer iR 1
between the spheres of radibsandb + db so that

Sa(®)|dw| = |SY72|p42|db|. (1.12)

Let dw be the band or§?~! limited by the hyperplanesx, wp) = cosd and (x, wo) =
cos6 + df); then |dw| = |S??| si"26|dh|. Now it follows from (1.12) that

Sa(0) = sint20b(0)?~2|db(0) /db)|. (1.13)

A motion in a central potential is plane so that the functloa- 5(0) is the same for
all dimensionsd. For the Coulomb potential (see, e.g., [B{¥) = (2E) 1|v| cot6/2).
Substituting this expression into (1.13), we arrive at formula (1.4).

2. Solutions of the Schodinger equation

In the particular casd = 3 the formulae below are contained in almost any textbook on
guantum mechanics (see, e.g., [6]). However, we have not found their proper presentation
for an arbitrary dimension.
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2.1.

Let us first construct scattering solutions for the ®dimger equation (1.9). We fix an
incident directionwy and seek the wavefunction in the form

Y =N fir—(wo,x)) = xl. (2.1)
Substituting this expression into (1.9) we obtain an ordinary differential equation
2tf"(t) + (d — 1= 2ikt) f'(t) — yf(t) =0
for the functionf. Therefore,
f(@) =cF(—ia, 8, ikt) o=y §=(Wd-1)/2 ¢ = constant
where F (a, b, z) is the confluent hypergeometric function satisfying the equation
2F"(2) + (b —2)F'(z) —aF(z) = 0. (2.2)

We choose the regular solution of (2.2) distinguished by the conditiq® = 1, F'(0) =
a/b. We need the asymptotic expansionfofa, b, z) asz — oo along the positive part of
the imaginary axis:

T *Fa,b,z2) =T —a) N (=2) A+ Gla,a—b+1, —2))
4+ (@) 2P €A+ Goob—a,1—a,2)) (2.3)

where arg+z) = +x/2 and

N
Gy(a,b,2) =Y (pHhla@+1D)...a+p—-Dbb+1)...b+p—1z".
p=1

Settinge = I'(8)"I'(§ + ia)(—i)~ and using (2.3) folu = —ia, b = §, we see that
function (2.1) satisfies equation (1.9) and

¥ (x) = explik(wo, x) + ia In(kr (1 — c0s8))) (1 + Gy (—ia, —ia — 8 + 1,—ikr(1— cosh)))
+a(8; k)r = explikr — o In(2kr)) + O 71 N>$6 (2.4)

as|x| — oo inany conexy; < cr,c <1 (oré > 6y > 0). Hereé is the angle (the scattering
angle) between andwy, that is co® = (x, wp)/r, and the scattering amplitudgo; k) is
defined by equality (1.10).

Compared to asymptotics (1.6) of scattering solutions in the short-range case, relation
(2.4) differs in several respects.

(1) A conical neighbourhood of the forward directién= 0 is excluded.

(2) The first term on the right-hand side of (2.8), corresponding to the incoming
plane wave, contains the phase shifh(kr(1 — cosf)) and corrections vanishing as?,
1< p<s.

(3) The second term, corresponding to the outgoing spherical wave, contains the phase
shift —a In(2kr).

It is natural to accept the coefficient0; k) of the modified spherical wave for the
scattering amplitude. Of course, one can add an energy-dependent cangtarib the
phase of the spherical wave, multiplyiagd; k) by e '® at the same time. Apparently
there is no preferable unique choice of scattering amplitude but its modulus is intrinsically
defined. We emphasize that equality (1.10) for the scattering amplitude gives formula (1.1)
for cross section (1.7).
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2.2.

For radial potentials ‘the variables can be separated’ in spherical coordinates. Recall that
the Laplace—Beltrami operaterA, on the unit spher8¢~! has eigenvaluek/+d —2),1 =
0,1,.... The corresponding eigenspagehas dimension

vd) =2 +d—-2)(1+d—-3(d-2'H". (2.5)
Let ¥;(w), ® € S*71, be an arbitrary function from the subspage(i.e. ¥; is the spherical
function), x = re andy (x) = r 2y, (r)Y;(w). Then equation (1.9) foy (x) reduces to the
equation
Y Far P yr =Y g =(0+8-127-1/4  (26)
for ¢, (r). Making the substitution
Ui (r, k) = r? e f(2ikr) g=1+3 (2.7)
we obtain
' +@2q—2)f) — (g —ie) fi =0.
This is an equation of the form (2.2) so thAtis the confluent hypergeometric function.
Let us set
fiz) = F(q — i, 2g, 2) with ¢; = i'@m)™Y2r @2 +2) 7 1e ™20 ([ + § +ia)|.
(2.8)
Then using asymptotics (2.3) we find that
Vi(r, k) =il 2/m)Y2 sinkr — aIn2kr) — (1 + 8 — D /2 4+ ni(k)) + O™ r— 00
(2.9)
where the phase shifts
m(k) = argl'(l + 8 + i) o=yt (2.10)

3. Scattering theory

3.1.

Recall the time-dependent formulation [2] (see also [7]) of the scattering theory for Coulomb
potentials. Letd = —A + y|x|~! be the self-adjoint operator in the spatgR?). In the
cased > 3 it is defined on the Sobolev clas®(RY), that is on the same domain as the
operatorHy = —A. In the casel = 2 its domain consists of functionswhich belong to
H? outside of any neighbourhood of the pain&= 0 and admit asx| — 0 the representation
u(x) = ug(x) + yuo(0)|x|, whereuo € H?. Denote byP the orthogonal projection on the
continuous subspace of the operatdr(of course,P is the identity operator ify > 0).

Let the free dynamicé/o(¢) be defined by the equality/o(r) = ©*Z(r)®, whered is
the Fourier transform and (z) is multiplication by the functiory (|¢], ¢) with

z(k, 1) = exp(—ik?t — iy (2k)tsgnt In(4|t|k?)). (3.1)
Then the strong limits
Wy=s— l “T exp(iHt)Up(t) 3.2)

exist. The modified wave operatoig, satisfy the intertwining propertt{ Wo = W.Hy
and are complete, i.eW.W} = P. The scattering operat@& = W;W_ commutes with
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Hy and is unitary. Of course, functiar(k, r) may be multiplied by an arbitrary function of
k of modulus 1 (not depending af. As we shall see, the choice (3.1) corresponds to the
scattering amplitude (1.10), which is also defined up to a unitary factor only.

The simplest proof of these results relies on separation of variables in spherical
coordinates (cf subsection 2.2). L$% be the orthogonal projection on the subspggce
so that

dpi=1 and —Ao= ) _l(+d -2 (3.3)
=0 =0

If Y;.,, is an arbitrary orthonormal basis ip, then (see [1, vol 2, section 11.4, formula (2)];
there is, however, a misprint in this formula)
vi(d) 0
Y Vim@Yin@) = (d =S N2 +d -G ((w,0)) d=3 (34
m=1
where G/ are Gegenbauer polynomials af&f~!| = 27%/?/T'(d/2) is the surface of the
unit sphere. It follows thaf3; is an integral operator with kernel (3.4).

Let K = Ly(R,; r™Y) be theL,-space with weight¢~! and$, = K ® ;. To put it
differently, £, C Lo(R?) is the subspace of functions of the form

u (x) = x| g (IxDYi(R) £ =x/lx| (3.5)

whereg € Lo(R,) and¥; € b;. According to the first equality (3.3),2(RY) = B2 5
Every subspace), is invariant with respect to the Fourier operatbiwhich reduces to the
Fourier—Bessel transform ofy;. More precisely, let/, be the Bessel function and

(D1g) (k) = i7'kY? f Jira—2)2(kr)rt2g(r) dr.
0
Then for function (3.5)

(Pu)(€) = €] (@18) €D Y1 (E) E=¢/8l. (3.6)

The operator®; is unitary onLo(R,).
Let z(r) be multiplication by function (3.1) if2(Ry) and U (r) = ®}z(t)®, so that

W) forr) = ilr? / K201 a2y 2(kr)z (K, 1) f7 (k) dk WD = @ fo. 3.7)
0

The subspace), is invariant with respect td/o(r) and with respect to the Sdinger
operator with a radial potential. Léft : Lo(R,) — K be a unitary operator defined by
(Tg)(r) =rg(r). Itis easy to see that

Uo(t) = @ TU T @ I and H= @ THOT*®1, (3.8)
=0 =0
where I, is the identity operator oy, and H” = —d?/dr? 4+ k;r=2 + yr~1. Note that
operatorsH ") are essentially self-adjoint on the domai§®(R,) if « > 3/4. If k = 3/4
(d=21=1o0rd =4,1=0), then the domain oH? is distinguished by the boundary
conditionu(r) = O(#¥?) asr — 0. If k =0 (d = 3,1 = 0), thenH® is self-adjoint on
H?(R.) with the conditionu(0) = 0. If k = —1/4 (d = 2,1 = 0), then functions from the
domain of H" satisfyu(r) = r¥/? 4+ yr3? 4 O(r®?) asr — 0.
Suppose that wave operators

W =5 — lim expiH 1)Uy (1) (3.9
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exist for alll. It follows from (3.8) that limits (3.2) also exist and
o0 o0

We=@PrwlT* o1 S=@rsrern S =wyw?, (3.10)
=0 =0

If all wave operatordV.’ are complete, i.eW{’ (W")* = P, (P, is the orthogonal projection
on the continuous subspace Bf"), then, according to (3.10), the wave operatts are
also complete.

3.2.

Let us check the existence and completeness of opermﬁ)rs At the same time we shall
calculate them in terms of solutions of the Sidiinger equation (2.6). Let functions(r, k)
be defined by formulae (2.7) and (2.8), where= y (2k)~, and set

Wi k) :/0 Yi(r, k) f(r) dr [ e CP®Ry). (3.11)

Lemma 3.1 The operatora; are bounded in the spaée(R,), ¥, ¥ = I (orthogonality
of the eigenfunctionsy;), W ¥, = P, (their completenegsand ¥, H" = k2¥; (the
intertwining property.

The proof of this assertion is the same as in the short-range case. Its result on
the generalized Fourier transfordy, is of the same nature as unitarity of the usual
Fourier—Bessel transform. Perhaps this result was not noted in the theory of the confluent
hypergeometric function.

Lemma 3.2 If et ®g(k) = go(k), then
lim lexp(—i H 1) W;'g — US (1)®; goll = 0. (3.12)
11— 00

We give the proof of this lemma in subsection 3.3.

Since ®;®; = I;, lemma 3.2 implies the existence of wave operators (3.9) and the

equality Wi”cbj‘ = Wy e", wheren, is multiplication byn; (k). Now the completeness of

Wﬂ) follows from the equalitys;¥; = P,. Let us formulate the results obtained.

Proposition 3.3 Wave operators (3.2) exist, are complete and
W =wrefne, SO =of e, (3.13)

Corollary 3.4 Wave operators (3.2) exist, are complete and admit the representation (3.10).
The scattering operata is given by equality(3.10), whereS® satisfies (3.13).

3.3. Proof of lemma 3.2

We omit here the index”. It suffices to prove (3.12) fogo € C°(R,) (or, equivalently,
g € C°(Ry)). It follows from (3.11) and the intertwining property that

(exp(—iH)W*g)(r) = f ~ W, k) e g (k) dk. (3.14)
0
Let us setuy = exp(Fi(l + 8§ — Dr/2),

U ()g)(r) = +i' 2/m)Y22i) s / gtitkr—y @O7HIn@kn) k) g1k o () i (3.15)
0
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and check first that

. “T lexp(—iHt)¥*g — Uy(t)g|| = 0. (3.16)

The Riemann—Lebesgue lemma (or integration by parts) shows that, for bouridesiyrals

(3.14) or (3.15) tend to zero (quicker than any powelt¢fl) as|t| — oo. By (2.9), the
function

exp—iH)W*g — (U, (1) + U_(1))g (3.17)

is bounded byCr~* for larger uniformly in . Therefore, the norm of function (3.17) tends
to zero agt| — oco. Furthermore, using the formula

ER KD — j(r — 2ke) L d AR (3.18)

and integrating by parts in (3.15), we find that the functi@h.(z)g)(r) is bounded by
Cr+clth XL+ |Inr]),c > 0, for £¢ > 0. Hence, its norm tends to zero as> +oo.
This proves (3.16).

Quite similarly, using representation (3.7) and replacing the Bessel function by its
asymptotics ag — oo we obtain

lim [ Us(0)*go — UL (1)goll = 0
where

UL (11g0)(r) = +i' @/m)Y2(20) s f T2 A ¢ gy . (319)
0

Thus, for the proof of (3.12) it remains to check that the function
Usg—UL (g0 €g = go (3.20)

tends to zero inL,(R,) ast — doo. Let us compare representations (3.15) and (3.19),
and integrate by parts using equality (3.18). The crucial point is that the singularity of
(r — 2k|t])~! is compensated by the vanishing of the function

gFiy @071 In@kr) _ Fiy (20~ In(4k2lr))

at the pointr = 2k|¢|. This implies that the norm of function (3.20) is bounded by
[t7Y21n |z].

4. The scattering matrix

4.1.

To define the scattering matrix we consider a diagonal representatiofpof Set
(Yo)(h; w) = 27Y2)@=2/45(3120). ThenF = Y®:Ly(RY) — Lo(Ry; Lo(S?71)) is a
unitary operator and” HoF* acts as multiplication by.. Since the scattering operatdr
commutes withHp, the operato S F* acts in the spacg,(R, ; L»(S?~1)) as multiplication
by an operator functio() : L»(S?™1) — Lo(S9™1), A > 0, called the scattering matrix.
To calculate the scattering matrix note that, according to (3.6), (3.10) and (3.13),
o0
oS0* =P @ 4.1)
1=0
wheren; is multiplication by function (2.10). Equality (4.1) can be rewritten in terms of
the scattering matrix. Recall that= 21y ~1/2,
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Lemma 4.1 Let ‘P, be the integral operator with kernel (3.4). Then

T+ +ia)

Tit+s—im) *2

S(h) = Z SO, where SO () = exp2in (AY?)) =
=0

Thus, the spectrum of the unitary operat®f.) consists of eigenvalue§® (1) of
multiplicity (2.5). By the Stirling formula,

SO () = expia In( + 8))(1 + O™y as [ — oo.

Since the functionf (x) = In(x +8) — oo but f'(x) = (x +8)~* — 0 asx — oo, this
implies.

Proposition 4.2 For anyA > 0 the eigenvalues of the scattering mat§i¢.) are dense on
the unit circle.

This is completely different from the short-range case when eigenvalues of the scattering
matrix accumulate at the point 1 only (the phase shiftd) tend to zero ag — 00).

4.2.

Let us now construct the scattering matfixi) as an integral operator. One can proceed
from expression (4.2) but avoid an apparently difficult problem of summation of this series.
To that end, we obtain an expression for the kewrel, »’; A) of S(1) by some heuristic
arguments and then check that such an oper&tby satisfies (4.2). First, by an analogy
with the short-range case we assume tHat, »’; 1) is related to the scattering amplitude
a(w, o'; k) for v # o’ by formula (1.8). Since satisfies (1.10), this gives expression (1.11)
for s(w, ’; ). Second, according to proposition 4.2, the spectral point 1 is exceptional for
S(») in the short-range but not in the Coulomb case. Therefore, it is natural to expect that
the Dirac function is dropped out efw, ’; 1). Thus we suppose that the scattering matrix
S(1) is given by the equality
'@ +ia)
[(—ia) Jos
One must be careful with a precise definition of this integral operator since its kernel
is not integrable in a neighbourhood of the diagowat «’. One of the possibilities is to
replace—ia by —iax +¢, ¢ > 0, in (4.3) and approximat& (1) by compact operators, (i)
with kernels

se(w, @3 A) = 222700 (8 + i — &) (=i + &) Yo — o |74+ 20+2e, (4.4)

(S f)(w) = 277 lw — /|72 £ () do. (4.3)

This is similar to the definition proposed in [4].
Let us decompos§, (1) into an orthogonal sum of projectofs;.

Lemma 4.3 For anye > 0

> Fd+68+ia—e¢)
Se(L) = SO h sSPpy=——~- "2
) ;g()% where  SP0) = Lo

(4.5)

The proof of this lemma is given in subsection 4.4.
Comparing lemmas 4.1 and 4.3, we see thi@t) may be approximated by operators
S.(1) in the strong operator sense.
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Proposition 4.4 The scattering matriX (i) satisfies the relation
S(A) =s — IimO S.(A). (4.6)
£—

Formulae (4.4) and (4.6) give precise sense to equality (4.3).

4.3.

According to (4.3), the kernel of the scattering matfig.) is a smooth function outside

of the diagonaky = «'. Its modulus has a singularity — «'|~¢*? at the diagonal which

is typical (the powerd — 1 equals the dimension &¥-1) for singular integral operators.
However, S(1) is an operator from an essentially different class. In fact, it is bounded
(and even unitary) due to oscillatiof® — «'|~2* which compensate the singularity of its
modulus whereas a singular integral operator is bounded because some average value of its
kernel is zero.

The structure ofS(A) becomes more transparent if one treats it as a pseudo-differential
operator. Its principal symbab(w, b) is defined forw € S, (b, w) = 0 (the cotangent
bundle ofS?~1) and, roughly speaking, it is the Fourier transforms @b, ') in the variable
E=w—o"

plw, b) = / s(w, @) €7@~ b gy
Sd*l

By calculation of the principal symbol we can replé&é! by its tangent plane at the point

w = ' and the kernek(w, ') by its singularity atw = «’. For spherically symmetric
potentialsp(w, b) depends otfb| only. In particular for kernel (1.11), calculating the Fourier
transform inR?~1 (in the sense of distributions) of the functigg~¢*1-2* we find that
p(w,b) = |b|?®. This is an oscillating function a| — oo, whereas in the short-range
case it converges to 1 (the Fourier transform of the Dirac function). In this sense the Dirac
function disappears from the kernel of the Coulomb scattering matrix.

4.4. Proof of lemma 4.3

Let us take into account the fact that — «'| = 2sin(@/2) and expand (see e.g. [1, vol 2,
ch 10]) function (4.4) on the intervaD, ) in a series of Gegenbauer polynomials:

sin-t1-2et2 g o) — i BIAG?%(cosn) d>3 (4.7)
=0
where
A = /OH(GV‘Z)/Z(cose))Zsirff—ze do
B - [On Sin*dH*Zi“Jrzg(9/2)G,(d72)/2(c059) sirf~20 do.
Note that

(24+d—22"NA =T +d—2)T(d-2)/2)?
(see [1, vol 2, section 11.1, formula (26)]) and

5 _ 27D+ =TEN (e + )l (L= 8~ +¢)
P @ =3 T (A —6—ia+e—DIG—ia+et+l)
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(the last equality can be easily deduced from formula 7.311(3) of [3]). Using well known
identities for the gamma function we see that

2—d+1n—ar(5+i“—8)ﬁ _ 2+4+d-2 T'(l+é+ix—¢)
F(—ia+¢e) Ay d—-2|SLYTU+8—ia+e)
Now (4.5) follows from (4.4), (4.7) and expression (3.4) for the kernel of the proj&gtor
In the casel = 2, calculations are much simpler because the role of (4.7) is played by
the formula

sin 2042 (9/2) = fo+2) ficosto) = Y fidve
=1

I|=—00

wherew = (cosgp, sing), ' = (cosy’, sing’), 8 = |¢ — ¢’| and
nf = / sin- 222 (9 /2) cog0) d.
0

Using [1, vol 1, section 1.5.1, formula (30)], we find that

M(—ia+¢e) Tl+1/2+ia—¢)
r/2+ic—e)T+1/2—ia+e¢)
This gives again (4.5) witlh = 1/2.

fi=nV2
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